The check matrix of a [145,135,5]4 (dual distance 58).
The first 9 rows and 87 columns are the check matrix of a [87,78,5]4 (dual distance 22).
For more information see Inverting construction Y1.
0000000110300202012331313213031233111200213020201211001023111211302101331233330201301310322301310012320321223223300333122113001010231233202123133
0000001020302210211022222133322310003202323222321301011212003301001120221211200323232110103312212311133102330323121020223100313032130112313203132
0000010010122212003330302032232320120323113213230332110111211332101012302320121000322100121331120000232333321300121113321211320220001110202022033
0000100002322301211032330011311001102031321112232130100131002131200113300130210021221110012302300313120201320100022301232120212002300012020200201
0001000032223011120323301103111000210313211122213301001310021310200000011120013332310200000011201203110023112130113012321323002031212321020211102
0010000012030021122010222223133022310032023232232123010112120033000000000001112111130220000000011122001103200112223000203321130221211220033022132
0100000013100020102233131132303331121120021302012021100102311121300000000000000131003030000000000000111210200000000111123013001112230102213233013
1000000012331213223320113221120111103023101121231101312233222213100000000000000001222330000000000000000012200000000000000113000000001122300112333
0000000000000000000000000000000000000000000000000000000000000000011111111111111111111110000000000000000000011111111111111111222222222222233333333
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111111111111111111111111111111111111
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.
| Some codes | home |